Automatic DNSSEC Bootstrapping with Authentication

ICANN 75 – Tech Day September 19, 2022

Peter Thomassen
peter@desec.io>
Nils Wisiol <nils@desec.io>

draft-ietf-dnsop-dnssec-bootstrapping

DNSSEC validation rate

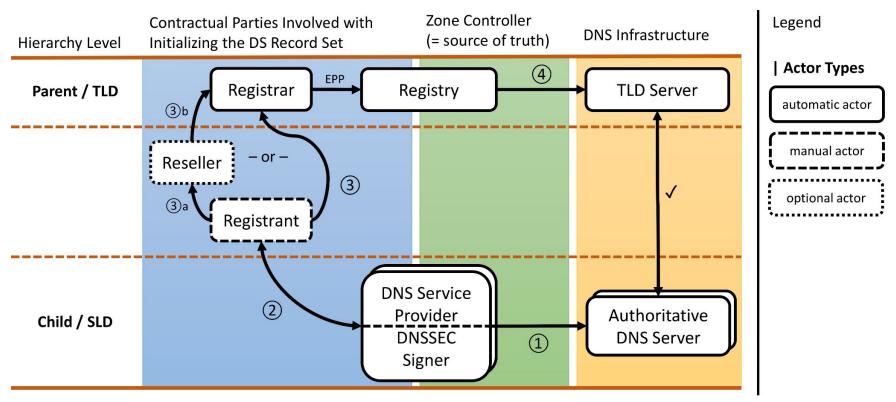
32% vs.

C 0/_

secure delegation rate

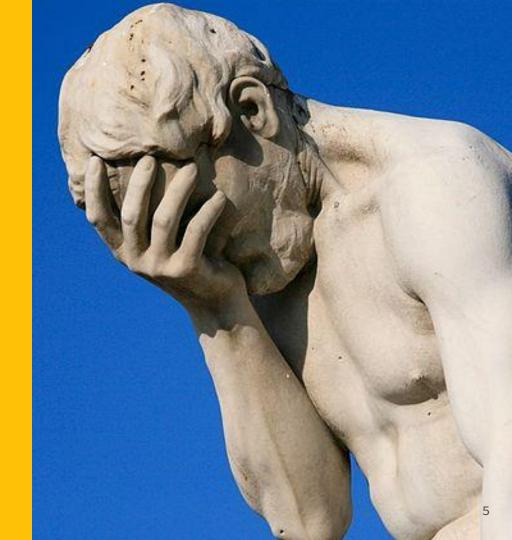
- globally
- 50–70% in some places
- even for signed zones:
 - < 50%

- globally
- o 50–95% in some places



Why are so few Delegations Secure?

- Deploying DS records is a multi-party problem
 - involving the DNSSEC signer (origin) and the parent Registry (recipient)
 - o ... and often the Registrar as the messenger,
 - ... typically facilitated through the Registrant
- Error-prone, (too) many parties, slow, out of band, not properly authenticated
 - \rightarrow needs automation!
- Any automation must involve the source of truth
 - typically the DNS operator
 - → needs independent participation of DNS operators



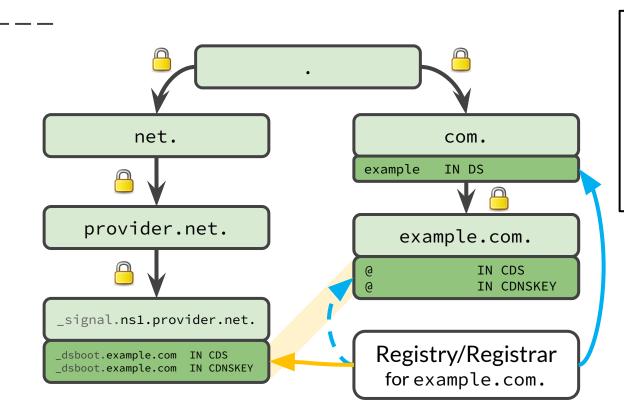
Traditional DS Deployment

DNSSEC is too hard

and we know it

Solution: Transfer Trust from DNS Operator

Internet Draft: draft-ietf-dnsop-dnssec-bootstrapping



How does it work?

- 1. Define a signaling mechanism for DNS operators
 - o allow **publishing arbitrary information** about the zones under management, **on a per-zone basis**
 - o do so using namespace **under each nameserver hostname** with **zone-specific subdomains**
 - require DNSSEC for authentication (requires nameserver domains to be secure)
- 2. Ask DNS Operators to **publish authentication signal** for CDS/CDNSKEY
 - o start with conventional CDS/CDNSKEY records at the apex of the target zone (RFC 8078)
 - co-publish these records via signaling mechanism (signed with NS zone's keys)
- 3. Validate target domain's CDS/CDNSKEY records against this signal
 - if successful: "transfer trust to the target domain"
 - → **provision DS records** at parent

CDS/CDNSKEY Authentication via Nameserver Signaling

Use an **established chain**of trust (left) to take a detour

- identically co-published
- authenticated, immediate
- no active on-wire attacker

Extends RFC 8078 to add authentication for initial DS

CDS/CDNSKEY-based Deployment

It's already in Production

Child:

- 2 DNS operators, for all DNSSEC-enabled domains
 - deSEC
 - Cloudflare (manages 23% of Top 1M domains)

Parent:

- 2 ccTLDs: .ch/.li
 - .cl close to roll-out
- Insecure bootstrapping supported by 5 ccTLDs (.cr, .cz, .nu, .se, .sk)
- GoDaddy to introduce automatic DNSSEC bootstrapping as a Registrar

You are invited!

- DNSSEC bootstrapping specification on the way to IETF DNSOP Last Call
 - https://datatracker.ietf.org/doc/draft-ietf-dnsop-dnssec-bootstrapping/
- Client-side implementations deployed for significant number of registrations
- Now: need parent-side implementations
 - add authentication to existing CDS/CDNSKEY scanning implementations (~5 ccTLDs)
 - start scanning for CDS/CDNSKEY under more TLDs
 - code examples available, please approach me: <u>peter@desec.io</u>
 - Registrars / ccTLD registries → Implementations!
- Let's make DNSSEC easy.

Thank you!

... also to our sponsor:

SSE

Questions?

Backup

Protocol Details

Algorithm

- Co-publish CDS/CDNSKEY records under a subdomain of the NS hostnames:
 - → CDS/CDNSKEY IN _dsboot.example.com._signal.ns1.provider.net
- Use **DNSSEC to validate** these records, under **each NS hostname**

Technical Considerations

- Naming scheme with _signal label allows delegating to separate zone
 - removes risk of accidentally modifying the nameserver's A/AAAA records
 - reduces churn on nameserver zone
 - allows splitting off DNS operations (e.g. online-signing with different key; delegate by parent)
- prefix allows different types of signals (e.g. for multi-signer p2p key exchange)

Security Model

- We use an established chain of trust to take a detour
 - o authenticated, immediate
 - no active on-wire attacker
- Actors in the chain of trust can undermine the protocol
 - o can also undermine CDS / CDNSKEY from insecure
- Mitigations exist, e.g:
 - monitor delegation
 - diversify NS TLDs
 - multiple vantage points

	BOOTSTRAPPING METHOD		
	MANUAL	CDS/CDNSKEY	Proposed
BOOTSTRAPPING INVOLVES			
zone operator Z	\checkmark^1	✓	✓
domain owner	✓	×	×
registrar	✓	×	×
registry	✓	✓	✓
ACTORS WHO CAN INITIALIZE KEYS	S		
Required parties (trusted)			
registrar	✓	\checkmark^2	\checkmark^2
NS zone operator	X	(✓)	$(\checkmark)^3$
NS zone ancestors	X	(✓)	(✓)
NS zone owner	X	(✓)	(✓)
Others parties (untrusted)			
active on-wire attacker	depends	\checkmark^4	×
social engineering attacker [1]	✓	×	×
Properties			
Prerequisites	out-of-band channel	MITM attack mitigation	suitable NS zone configuration
Authentication	bad in practice [1]	none	cryptographically
Duration	varies	days	minutes

Table 1: Comparison of methods for establishing a new secure delegation, dispaying a) entities involved in the bootstrapping of an individual insecure zone, b) attack surface towards trusted and untrusted third parties, and c) prerequisites, key material authentication, and bootstrapping duration. Key initialization within parentheses (✓) requires collusion across all NS zones. ¹ For offline signing, only the signing key holder is involved. ² Registry could refuse deployment through registrar. ³ Requires knowledge of private key. ⁴ Several vantage points and long time must be covered.